Cold Atmospheric Plasma for Partial-Thickness Burns: Faster Epithelialization and Less Pain with Modern Dressings: A Randomized Clinical Trial

Cold Atmospheric Plasma for Partial-Thickness Burns: Faster Epithelialization and Less Pain with Modern Dressings: A Randomized Clinical Trial

Authors

  • Choi Ji A Burn & Wound Unit, Dept. of Plastic and Reconstructive Surgery, Donghae Dong-in Hospital, Donghae-si, Gangwon-do, Republic of Korea
  • Kim Seo Yun Burn & Wound Unit, Dept. of Plastic and Reconstructive Surgery, Donghae Dong-in Hospital, Donghae-si, Gangwon-do, Republic of Korea
  • Lee Min Jun Evidence-Based Nursing, College of Health Sciences, East Sea University, Gangneung, Gangwon-do, Republic of Korea

DOI:

https://doi.org/10.70196/jwrt.v2i2.68

Keywords:

burns, wound healing, plasma gases, adult

Abstract

Background: Partial-thickness burns remain a substantial clinical and service burden, with wide variation in practice and outcomes across settings. Evidence for cold atmospheric plasma (CAP) as an adjuvant to modern dressings is promising but limited, and its effects on healing trajectories and pain in acute burns are not well-defined.

Purposes: This study aimed to test whether adding CAP to modern dressings accelerates wound healing and reduces procedural pain compared with dressings alone among adults with second-degree burns.

Methods:  In a two-arm, assessor-blinded randomized trial at Donghae Dong-in Hospital, Republic of Korea (February–March 2025), adults ≥18 years with partial-thickness burns presenting within 72 hours were randomized to CAP + modern dressing or dressing alone. Forty-one were randomized; 36 contributed to the primary analysis. CAP was applied 3×week for 5–8 minutes before dressing placement. The primary outcome was the percent change in wound area over 28 days. Secondary outcomes were time to complete epithelialization and pain during dressing change (VAS 0–10). Analyses used GLM repeated-measures ANCOVA (covariates: %TBSA, age) and Cox regression.

Results:  Among 36 analyzed participants (balanced baseline; median %TBSA 5%), CAP accelerated wound-area reduction versus control (Group×Time p<0.001; ηp²=0.25). By Day 28, CAP achieved a 17% greater reduction (adjusted Δ -17%, 95% CI −23 to −11). Pain declined faster with CAP (adjusted Δ −1.5 at Day 14; -1.9 at Day 28). Time to complete epithelialization was shorter with CAP (median 14 vs 21 days; adjusted HR 2.12, 95% CI 1.12–4.01). Effects were directionally consistent across prespecified sensitivity analyses.

Conclusion: Adding CAP to modern dressings improved healing trajectories, reduced procedural pain, and shortened time to epithelialization in adults with partial-thickness burns. Findings support protocolized adoption in capable units and motivate multicentre trials with scar, microbiological, and economic endpoints.

Downloads

Download data is not yet available.

References

Berinyuy, S. N., & Bekeschus, S. (2024). The promising potential of cold atmospheric plasma in medicine. Plasma, 7(2), 25. https://doi.org/10.3390/plasma7020025

Braný, D., Dvorská, D., Halašová, E., & Škovierová, H. (2020). Cold atmospheric plasma: A powerful tool for modern medicine. International Journal of Molecular Sciences, 21(8), 2932. https://doi.org/10.3390/ijms21082932

Burhan, A., Syafiqah, N., Ruangdet, K., MacLeod, R., Roy, A. D., Norrström, E. M., & Susanti, I. (2025). Hidden Wounds: Prevalence of Chronic Wounds in Asia, A Systematic Review and Meta‑Analysis. Java Nursing Journal, 3(2), 221–235. https://doi.org/10.61716/jnj.v3i3.117

Chiang, R. S., Borovikova, A. A., King, K., Banyard, D. A., Lalezari, S., Toranto, J. D., Wirth, G. A., Lee, G. K., Evans, G. R. D., & Widgerow, A. D. (2016). Current concepts related to hypertrophic scarring after burn injuries. Wound Repair and Regeneration, 24(3), 466–477. https://doi.org/10.1111/wrr.12432

D’-Abbondanza, J. A., Lipsky, B. A., & Laifer, G. (2021). Burn infection and burn sepsis. Surgical Infections, 22(1), 43–56. https://doi.org/10.1089/sur.2020.102

Draaijers, L. J., Tempelman, F. R. H., Botman, Y. A. M., Tuinebreijer, W. E., Middelkoop, E., Kreis, R. W., & van Zuijlen, P. P. M. (2004). The Patient and Observer Scar Assessment Scale: A reliable and feasible tool for scar evaluation. Plastic and Reconstructive Surgery, 113(7), 1960–1965. https://doi.org/10.1097/01.PRS.0000122207.28773.56

Greenhalgh, D. G. (2024). Diagnosis and treatment of infections in the burn patient. Surgical Infections, 25(3), 183–193. https://doi.org/10.1089/sur.2023.168

Hawker, G. A., Mian, S., Kendzerska, T., & French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care & Research, 63(S11), S240–S252. https://doi.org/10.1002/acr.20543

Heinlin, J., Zimmermann, J. L., Zeman, F., Bunk, W., Isbary, G., Landthaler, M., Maisch, T., & Karrer, S. (2013). Randomized placebo-controlled human pilot study of cold atmospheric plasma in skin graft donor site healing. Wound Repair and Regeneration, 21(6), 800–807. https://doi.org/10.1111/wrr.12078

Isbary, G., Heinlin, J., Shimizu, T., Zimmermann, J. L., Morfill, G., Schmidt, H.-U., Monetti, R., Steffes, B., Bunk, W., Li, Y., Klaempfl, T., Karrer, S., Landthaler, M., & Stolz, W. (2012). Successful and safe use of 2-min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. British Journal of Dermatology, 167(2), 404–410. https://doi.org/10.1111/j.1365-2133.2012.10923.x

Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews Disease Primers, 6, 11. https://doi.org/10.1038/s41572-020-0145-5

Ji, S., Li, Z., Zhao, F., Xiao, S., Xia, Z., & the Chinese Burn Association et al. (2024). Consensus on the treatment of second-degree burn wounds (2024 edition). Burns & Trauma, 12, tkad061. https://doi.org/10.1093/burnst/tkad061

Jiang, H., Li, H., Feng, S., & Xu, J. (2017). A systematic review of randomized controlled trials on dressings for the treatment of partial-thickness burns. BMJ Open, 7(1), e013289. https://doi.org/10.1136/bmjopen-2016-013289

Kiley, J. L., & Greenhalgh, D. G. (2023). Infections in burn patients. Surgical Clinics of North America, 103(3), 427–437. https://doi.org/10.1016/j.suc.2023.02.005

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863

Mahendra, R. E. F., Burhan, A., & Susanti, I. (2024). An analysis of various wound washing methods and their efficacy in treating chronic wounds: A comprehensive review of existing literature. Journal of Wound Research and Technology, 1(1), 1–8. https://doi.org/10.70196/jwrt.v1i1.2

Mirpour, S., Fadaei, F., Soltani, Z., Ghomi, H., Rezaei, F., & Larijani, B. (2020). Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Scientific Reports, 10, 10440. https://doi.org/10.1038/s41598-020-67232-x

Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gøtzsche, P. C., Devereaux, P. J., Elbourne, D., Egger, M., & Altman, D. G. (2010). CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomized trials. BMJ, 340, c869. https://doi.org/10.1136/bmj.c869

Murali, R., Ranganathan, S., Vetrivel, A., & Saravanakumar, K. (2024). Cold atmospheric plasma in wound healing. Redox Experimental Medicine, 1(1), 1–15. https://doi.org/10.1530/REM-23-0026

Nímia, H. H., Carvalho, V. F., Isaac, C., Souza, F. Á., Gemperli, R., & Paggiaro, A. O. (2019). Comparative study of silver sulfadiazine with other materials for healing and infection prevention in burns: A systematic review and meta-analysis. Burns, 45(2), 282–292. https://doi.org/10.1016/j.burns.2018.05.014

Schulz, K. F., & Grimes, D. A. (2002). Allocation concealment in randomised trials: Defending against deciphering. The Lancet, 359(9306), 614–618. https://doi.org/10.1016/S0140-6736(02)07750-4

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428. https://doi.org/10.1037/0033-2909.86.2.420

von Woedtke, T., Emmert, S., Metelmann, H.-R., & Weltmann, K.-D. (2020). Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 27(7), 070601. https://doi.org/10.1063/5.0008093

Wang, S. C., Anderson, J. A. E., Evans, R., & Woo, K. (2017). Reproducibility and accuracy of a wound measurement app. PLOS ONE, 12(8), e0183139. https://doi.org/10.1371/journal.pone.0183139

World Medical Association. (2013). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

World Health Organization. (2023). Burns. https://www.who.int/news-room/fact-sheets/detail/burns

Zafarghandi, M. S., Raissi-Dehkordi, R., Sabouri, A., & Nafarzadeh, M. (2025). Cold atmospheric plasma in wound and skin regeneration: Mechanisms and clinical translation. Frontiers in Medicine, 12, 1527736. https://doi.org/10.3389/fmed.2025.1527736

Zhang, J., Zhang, Q., Wang, Y., & Du, Y. (2020). Imaging in chronic wound diagnostics. Advances in Wound Care, 9(12), 703–716. https://doi.org/10.1089/wound.2019.0967

Downloads

Published

2025-10-21

How to Cite

Ji A, C., Seo Yun, K., & Jun, L. M. (2025). Cold Atmospheric Plasma for Partial-Thickness Burns: Faster Epithelialization and Less Pain with Modern Dressings: A Randomized Clinical Trial. Journal of Wound Research and Technology , 2(2), 64–71. https://doi.org/10.70196/jwrt.v2i2.68
Loading...